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This paper examines the problem of a pulsating compact body moving with 
constant velocity. This problem is usually incorrectly treated as a convected 
monopole. The analysis here shows that the motion of such a ‘real’ source 
introduces additional coupled multipoles, whose combined effects generate pre- 
viously unexpected convective features. The amplification obtained is not the 
monopole convective amplification (1 - &.)-2. It is found to depend on the virtual 
mass tensor of the body, the minimum effect being (I -M,)-3. There is also 
amplification in the direction perpendicular to the flight path (unless the motion 
is parallel to a principal axis of the virtual mass tensor). 

The field produced by oscillation of a convected compact body of constant 
geometry is also investigated. Again, this problem is often misrepresented as a 
moving dipole. Here it is shown that the effect of convection on such a real source 
is surprising and complicated. It cannot be described completely by Doppler 
factors, and there is amplification in the direction perpendicular to the source 
motion. 

These two model problems serve as a warning that the effect of flight on real 
sources cannot be anticipated until such real sources are correctly modelled, and 
that also the influence of source motion is likely to be much greater than has SO 

far been anticipated. 

1. Introduction 
The field produced by a moving monopole source is well known (Lienard & 

Wiechert 1900). Morse & Ingard (1968) assume that such an acoustic field may be 
produced by a pulsating compact body. That is incorrect. 

Convective effects are extremely important in the aeronautical noise problem, 
where they are known (Hoch & Hawkins 1973) to be both significant and per- 
plexing. Of course, there the precise nature of the sources is usually not known 
while prediction of flight changes in the acoustic field is invariably based on 
known results for mathematically convenient source models. That is how the 
apparently simple problem of a convected pulsating spherical source is so often 
treated incorrectly. 

This paper examines two of the simplest problems in greater depth and shows 
that the consequences of real source motion are rather unexpected. Motion intro- 
duces additional coupled multipoles whose combined effects generate previously 
unexpected convective features. We examine a small deformable body whose 
centroid is in uniform motion and show that that motion amplifies the linear 

34 F L M  74 



530 A .  Dowling 

sound field by a factor ( 1 + aij Mjai) (1 - M cos 8)-3, olij being the virtual mass 
tensor, M the convection velocity normalized to the speed of sound and 26 the 
direction cosine of the path taken by the sound travelling towards the distant 
observation point at  an angle 8 to M, the direction of flight. The simplest source, 
that generated by a volume pulsation, does not receive the monopole convective 
amplification factor (1 - M COB O)-2. The product Mi i?i or M cos 8 appears fre- 
quently in what follows and we shall write M, in its place, the suffix implying the 
direction in which the particular sound ray is travelling to the distant field. The 
minimum effect (1  - M cos @-3 pertains when the virtual mass is zero, in accor- 
dance with the result found by Ffowcs Williams & Lovely (1975). Finite virtual 
mass both increases the magnitude of convective amplification and radically 
changes it in that there is also an amplification in the directtion perpendicular to 
the flight path (unless the motion is parallel to a principal axis of the virtual mass 
tensor). 

We also study the far sound field produced by an undeformable body moving 
with a small vibration superimposed on otherwise steady low Mach number 
convection. This sound field has previously been assumed (incorrectly) to be 
modelled by a moving dipole, see for example Ffowcs Williams & Hawkings (1969, 
equation 7.5). The effect of convection is then completely described by the 
multiplying factor (1 - M cos 8)-2. However, closer investigation shows that the 
effect of motion is far more complicated. It does not just involve Doppler factors, 
and there is amplification in a direction perpendicular to the source motion even 
for an isotropic body. For motion parallel to a principal axis of the inertial mass 
tensor, the non-convected field of a vibrating body is amplified in motion by the 
fourth power of the inverse Doppler factor, and in addition there is an omni- 
directional term in the sound field ! 

These are significant differences not easily predictable from the substantial 
literature on the subject and give cause to expect that when the real complex 
sources of practical importance are effectively modelled some of the difficulties of 
accounting for flight effects on aircraft noise levels will be overcome. 

2. The sound field produced by a weakly pulsating body in uniform 
motion 

We consider the problem of a pulsating compact body moving with a constant 
velocity U through an inviscid fluid at rest. The Mach number M (  =U/c0) is 
assumed small enough that M2 is everywhere negligible in comparison with unity. 
The influence of motion is rather unexpected, so that we feel it prudent to 
demonstrate the result by three independent methods. In  the first we select 
P = (p/po - 1) ci + iu2 as the perturbed quantity, and derive the governing 
equation from a consideration of mass and momentum conservation as follows: 



Convective ampli$cation of real simple sources 531 

p, p, u and o are respectively the instantaneous values of pressure, density, 
velocity and vorticity, and the suffix zero implies the mean value in the distant 
field. 

These two equations are combined to give an inhomogeneous acoustic wave 
equation valid throughout the fluid: 

c0 is a constant, which we choose to equal the acoustic wave speed at infkity. 
I n  the appendix i t  is shown that 

where ni is the direction cosine of the normal pointing into the fluid at 8, a surface 
of fixed shape which completely encloses the body at all times (and possibly some 
fluid too), and moves with the mean velocity of the body. V is the region out- 
side s. H is the Heaviside function equal to unity in V and zero otherwise. The 
equation is exact and all the above flow quantities vary with position and 
time. 

The origin of the co-ordinate q = y - Ut moves uniformly with the centroid of 
the pulsating body, and the square brackets mean that the function they enclose 
is to be evaluated at retarded time t - r/c, r being the distance travelled by the 
wave from its source at y to the field point x, i.e. r = Ix- yI. 

For low Mach number flow about a compact body, we can neglect terms 
quadratic in the density perturbation, so that 

2.)-Po = ct(P-Po), j-p-1d.P = ct(P/Po- 1). 

The analysis can in fact be continued without neglecting the quadratic density 
fluctuation terms if one assumes a defkite functional relation between the 
pressure and density fields,p/pr = constant, for example. Then the density can be 
determined once the pressure has been calculated from an incompressible 
modelling of the near-field flow. We have done that calculation to ensure that the 
error incurred in the neglect of the quadratic density fluctuation terms is smaller 
by at least the compactness ratio or the square of the flow Mach number than the 
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terms we retain. That error is negligible in the compact body, low Mach number 
limit, so that (2) may be written as 

with P = ( p  -po)/po+ iu2. This equation is in a suitable form to apply the 
hypothesis underlying the Lighthill theory of aerodynamic sound; the sound 
field itself is unimportant as a wave gen rator, and the various integrands on the 
right-hand side of (3) may be defined as sound sources. 

Howe (1975) has shown that, when th  I flow variables in the source terms of (3) 
are replaced by their values in incompressible flow satisfying the same boundary 
conditions, an error of order A? in comparison with unity is made. This we 
neglect. Thus, in order to determine these source terms, we consider here the 
problem of a pulsating body moving through an incompressible inviscid fluid at 
rest. From Kelvin’s circulation theorem we see that the flow is at all times kota-  
tional and a potential q5 exists such that u = Vq5, with V2# = 0. Then Bernoulli’s 
equation gives 

and (3) becomes 

where 

We shall see later that the terms in Q do not give rise to a significant sound field. 
We shall now proceed to evaluate these source terms, to determine the sound 

radiated by the ‘weak pulsation of a compact body’, and the effect of motion on 
that sound.: 

We consider a situation where the body has a fixed shape but variable scale. 
We denote the length of a reference line by A(t)  and define 

v ( t )  = dA/d t ,  cz = A ( 0 ) .  

We restrict the analysis to a small slow pulsation, by which we mean a pulsa- 
tion described by v = e2co V ,  where V = O(1) and E is a small parameter. This 
ensures that the surface normal velocity is always entirely subsonic. Also we 
require that 
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Pulsating body \ 

FIGURE 1. The surfaces over which integrals are evaluated in the pulsating body case. 

T being anon-dimensional slow time defined by T = ec0a-lt. This is a compactness 
condition. Then v = e2co V gives 

dv/dt = e3c;a-ldV/dT, d2v/dt2 = O(e4), 

A(t) = a+/:v(t‘)dt’ = a+ca V(T’)dT’ l o T  and also 

= a + O(ea) c a + eak, 

S may be taken to be a surface with the same shape as the body, with the length 
of its reference line being a + &a; see figure 1. 

From this it is evident that we imply by the term ‘weak pulsation of a compact 
body’ that the surface vibrational velocity is always much less than co and that 
waves travel a distance much greater than a in one unit of time that characterizes 
the surface motion. Furthermore, we require that the motion is even more sub- 
sonic than the body is compact ! 

The velocity potential q5 satisfies V2q5 = 0 in the fluid, with the boundary 
conditions n. V$ = vg(q) + U. n on the surface of the body and 

say. 

Vq5+0 as q-fco; 

g(q) is a function of geometry, whose precise form is actually unimportant in the 
analysis that follows. 

Because of the linearity of the equation and the boundary conditions, we can 
consider this as a superposition of two problems and write 

$ = v ~ ( q , A ) + U . W J , A ) ,  
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where Y and 9 are functions of position and time that depend on the shape and 
the instantaneous size of the body. This is a generalization of the procedure 
described by Batchelor (1970, p. 402). 

It is convenient to write the dependence of 9 on the size of the body explicitly. 
I n  order to do this we non-dimensionalize lengths with respect to A , and, writing 
E; = A-lq, we introduce a non-dimensional function &(E, A )  defined by 

A W L  A )  = Q(T7 A ) ;  

then # satisfies Vi(U. 4) = 0. The boundary condition on the body gives 

n5 a(v. $)/a& = U. n. 

Thus A(t)  has been eliminated from the problem for $, so d is necessarily 
a function only of the body shape. Therefore 

4 = vY(q,A)+AU.&(A-lq), 

a$/at 1 = CY - v2 ayr/aA + vo so that 

and 

where O = - ?& a y / a r k  + U,&j + AU, &j/aA - U, UkA a&j/aqk. 

We now express v in terms of the non-dimensional form Y in order to see the 
relative magnitude of these terms. 

and 

Since 

we have 

and 

From (4), 

where the retarded time r* satisfies cor* = Ix- UT* - '11 , which for x in the far 
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We can expand the terms in the surface integral as a Taylor series in time, and 
from the order of magnitude of the time derivatives found in ( 5 ) ,  only the first 
time derivatives are important. Hence 

where 
so that 

Now Y and @i are well-defined harmonic functions which are determined by 
the boundary conditions on the body. In the region exterior to the body, Y and 
&i may be expressed as a sum of harmonic functions: 

where the c's are independent of A ,  and 7 = Iql. It is well known from potential 
theory (e.g. Batchelor 1970) that the velocity potential Q1 outside a body is 
such that q5 = - m(t)/(47r7) +aiiyj/73+ higher harmonics, where m(t) is the rate of 
change of volume of the body. 

If the volume of a body with unit reference length is V, then a body with length 
scale A has volume V, A3, and the rate of change of volume is 3G A2v. Hence, 
since this is independent of U, ci is zero and 

y." = - 3V, A2/47r7 + higher harmonics, 

gi = A2cik 8q-l/8qk +higher harmonics. 1 
We see that Qi and Y are well-defined functions (for q 9 0) .  The integrals over 

the surface S in (6) may be evaluated by applying the divergence theorem to a 
region 9 between S and a large sphere S,. 

Of course this step is purely formal and carries no implication that the harmonic 
functions represent the actual distant field. Then, with the normals to the surfaces 
in the directions sketched in figure 1, 

(7) 
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since 

Expression (8) shows that only the f i s t  terms in Y? and Qj contribute to the 
acoustic field. We can now simply evaluate these integrals using (7). 

= € 3 ~ 2  a - 36 + 0 ( 8 4 ) .  (9) 
O dTr(1-M,) 

Now A &/aA = 2 6  + O(T-~) from (7)  and so 

Now 

Applying the divergence theorem to 9, the region between S and S,, we can 

- 

where B is the surface of the pulsating body. The boundary conditions give 

AU,n,a6,,.aqi = U,n, on B 
and hence 

n n 

UkJ (?,?inj&,/a?,?,-ni6k) dS(q) = UkJ (A-lq,nk-n,6,)cEB+O(t.) 
B W  B 

where a,, is the virtual mass tensor, defined by 

GA3aik = -JB@,nidB. 

We have now shown that 
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Finally, returning to a dimensional form and substituting (9) and (10) in (8) we 
obtain the form of the distant acoustic field: 

3&a2d ( 1+>2  U x. (24,  + a$,) 
47rP(x,t) = 

r ( l - M r )  c,, r 1-M, 

- - 3V,a2d { 1 + 3 aik M, 
t - ( 1 - ~ ~ ) 3  r 

This is the main result of this paper. 
It is surprising on two counts. The pulsating body is often regarded as the 

fundamental model of monopole sources, and monopole fields are generally 
thought to display a simple (1 - M,)-2 factor due to convection. We see that such 
an impression is false, because the unsteady force on the body that must accom- 
pany any mass (and momentum) displacement destroys any simple source type 
specification of the field. Second, and now not so surprising, the influence of 
motion depends entirely on the body shape as determined through the virtual 
mass tensor. 

In  particular, if M lies along an eigenvector of the symmetric tensor aij, or 
along the body's axis of symmetry if one exists, then 

aii Mi = aM,, 

where a is the eigenvalue corresponding to the eigenvector M. a is then the drag 
force on the body as a function of the rate of change of the inertia in the fluid the 
body has displaced. Equation (1  1) reduces to a simpler form 

47rP(x, t )  = 3V,a2d( 1 - N,)-(3+oL)/~. (12) 

In  general of course the force generated by potential flow on an arbitrary-shaped 
body of variable volume is not parallel to the direction of motion, and that is the 
origin of the more complex structure in (11). The consequences of source motion 
are then quite different from any description of convective effects we have seen 
in the literature on the subject (Lowson 1965; Morse & Ingard 1968; Ffowcs 
Williams & Hawkings 1969). 

Furthermore, the result demonstrates a feature that may be of considerable 
practical importance. The consequences of source motion are not in general 
negligible at 90" to t'he direction of motion, as isinvariably apparent fromprevious 
studies of convected sources. They all deal with mathematically convenient 
source descriptions and they may have little relevance to reality. This feature 
may provide a clue to the so-far perplexing issue of how aircraft motion affects 
the noise heard at 90' to the flight path. There i t  is known that effects exist which 
are not accountable for by Doppler effects (Hoch & Hawkins 1973). The change 
may be due to the need to model sources more realistically. These conclusions are 
surprising enough that we ought to check the analytical scheme. This can be done 
in the general case but for simplicity we give below only alternative proofs of the 
result for the particular case when the body is a pulsating sphere. 

We consider therefore a radially pulsating sphere of radius A(t)  moving with 
low subsonic velocity U. The virtual mass tensor is ai5 = @,, and V, = $7r. 

P(x, t )  = da2( 1 - &)-3+/r, 
From (12), 



538 A .  Dowling 

a being the mean radius of the sphere, and in the linear sound field 

P(X, t )  = (P - Pof/Po, 

( p  -Po) (x, t) = poa2d( i -M,)-"/r. 

ao that the far-field acoustic pressure is 

We now obtain this result by two other methods. 

3. Matched asymptotic expansions 
I n  a frame in which the sphere is at  rest and the fluid a t  infinity has a velocity 

- U, the velocity potential $ satisfies the convected wave equation in the far 
field. The outer solution for q5 is therefore of the form 

$ = - Url+-f l ( t - -  7 + co My1 )+$(++7)+... T+M71 . 
7 

I n  the inner field, the flow is by definition of the term 'inner' incompressible, SO 
that V2q5 = 0. An applicabion of the boundary conditions on the sphere gives 

as the inner solution. By matching this to the outer selution we obtain a 
uniformly valid expression for the problem: 

In  the far field, after linearizing in v, this becomes 

$(q,t)  = - v cos 8, 

where cos 8 = ~ ~ / y .  This distant potential is related to the pressure by 

p da2 
Pht)--PO = -P ($- u&) $ = (1 + +M cos 8). 

7 

For a frame (x, t) in which the fluid is a t  rest and the sphere moving 

1x1 = 7/(i-Mcos8), MCOSB = Ncos8+O(M2), 

so that +(x, t )  = - a2v(7*) (1 - M cos e ) - y T  

and (p -p0)(x, t = a26(7*) (1 - M cos 0)-34/~, 

as we have already determined from the general expression ( 11). 

4. The Lighthill theory 
The same result can be obtained from Lighthill's equation. We take the surface 
S to be the surface of a sphere moving with a velocity U and of fixed radius 
a + &a, where k is large enough for the surface to enclose the pulsating sphere at  
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all times. This surface S is not impenetrable so we have additional terms to the 
usual representation, the relevant form being 

where Tii is the Lighthill stress tensor pui u, +pi j  + c t (p  - po)  Si,, pi5 is the com- 
pressive stress tensor, J& = U.x/(coIxl), q = y-Ut and square brackets imply 
evaluation at retarded time. 

Again, near the body potential flow determines the source terms with an error 
of M 2  in comparison with unity. Hence in evaluating the source terms we use 

The monopole term is 
9 = - vA2/T - &UA3rl/q3. 

Expanding the retarded time gives 

+higher time derivatives and products of v 
= po  d4na2( 1 - J&)-3/r. 

The dipole term may be evaluated by first substituting for the pressure from 
Bernoulli's equation, then performing the integration to give 

Also we note that 

Hence p -po = po  a%( 1 - M,.)+/r. 

5. The sound field produced by a juddering compact body 
We consider a rigid body of volume V, moving through a fluid at rest with 

a velocity U, where U contains a small variable perturbation about a constant 
velocity, i.e. U = Uo+ev(t), where Uo is a constant and e is a small parameter. 
We now non-dimensionalize velocities with respect to co, time with respect to 
a/(co e), and introduce a non-dimensional velocity V and a non-dimensional 
slow time T defined by V = v/co and T = ecot/a. As a compactness condition we 
require that 

V ,  dV/dT, d2V/dT2, ..., = O ( 1 ) .  
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Hence U = c,M+Ec,V, 

dUldt = e2c; a-l dV/dT, d2U/dt =  cia-^ dVldT. 

M 2  is neglected in comparison with unity and again we may take the ‘source’ 
terms in (3) (cf. Howe 1975) to have the values determined by an incompressible 
flow with the same boundaries. As before, the incompressible flow is potential, 
and the far acoustic field is given by 

where 

X is the surface of the body and V is the volume of fluid outside 8. 

a Taylor expansion of retarded time gives 
We can combine the dipole and monopole surface terms in this equation, and 

where 

1 . .  

r -- 

and three terms of the retarded time expansion in the monopole and two terms in 
the dipole give terms up to order e3. 

The velocity potential $ satisfies V2# = 0 in V with the boundary condition 
a#lan = U . n on 8. It is well known from potential theory (e.g. Batchelor 1970, 
p. 403) that such a + can be written as $I = U. 9(q), where 

(Di = - Vo(aij + Sii) q,/4nq3 + higher harmonics. 

Then a#/atl, = ~ . * - - u . v # .  (15) 

(14) 

Q, is a well-defined harmonic function, and the integrals in (13) may be simplified 
by applying the divergence theorem to the region 9 between the surface S and 
a large sphere S,; again there is no implication that 9 represents the actual 
distant field. Then 

= o  



by a second application of the divergence theorem. The integral over 8, may be 
evaluated using the far-field form of Qm given in (14) and the two standard 
integrals 

r -2n i  ni nk n, dS = &r{aij 8h.r + &jk ail + &jl &ik} s sphere 
7 - 2 n . n  3 k  dS = t d j k ,  s sphere 
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t o  give 

= %(&mi + a m i )  (aij &kI + &jZ &ik}- ( 18) 

We can simplify the integral over 8 in (17) because 

SU,S S ( 2 ~ j k ~ m n , + ~ ( q k n j - ~ j n k )  aY1 I = -2s jkumqad~  

+ terms antisymmetric in j and k. (19) 

Substituting (18) and (19) into (17), we have 

fs (473 7 k  ni a2#/aYi at - ni 7 k  a$/at) 

= - ajk Sad& + Q u m  U,V,(sjmskl + sjlsmk + am* &M + amk Sjl> 

+ terms antisymmetric in j and k + O(eU2G) 

and from (13) 

+ ajm g - 24, am,&@} + O(€ 4 co 2 a -2v 0 ) .  

We have only the volume source term in (4) still to evaluate. 
The total volume source strength is 

by the definition of azm. Let SL be a large sphere of radius R,, and V, be the region 
outside this sphere. Then the total source strength in VL is 

+u2d V = IsL #V# . n dS = O( U2V; R z 3 )  from the far-field form of Q in (14) 

= O(USV,e) if R, > (V,e-l)+. 
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Hence the total source strength outside a sphere of radius (&e-l)# is of order 6 
smaller than the source strength within such a sphere. Retaining only the lowest- 
order terms in e,  we have aJinite source region, and 

for points in the far field such that r $ (V,s-l)*. Returning to dimensional times, 
from (4) the total acoustic far field is described by 

4 N P  -Po)/Po+ tU21 (x, t )  

where the suffix r denotes the direction of the field variable x, and JZZ = dMJdt; 
again M 2  has been neglected in comparison with unity. The first term is that due 
to a moving dipole, and i t  is usually taken to describe the acoustic field. We see 
that this is incorrect and that to describe the effect of convection we must retain 
the second term, which has a very complicated structure and contains an omni- 
directional term. 

This form simplifies when M is parallel to M and both vectors lie along an 
eigenvector of the symmetric tensor aij. If a is the ckresponding eigenvalue then 

Mj = aMi, aij M j  = aMi 

and (30) has the simpler form 

The first term on the right-hand side has the value of the acoustic field modified 
by motion by a Doppler factor to the fourth power. The last term represents anon- 
directional field, which produces amplification even a t  90' to the motion. 

6. Conclusion 
We have seen that the convective amplification obtained from a moving 

pulsating body is different to that obtained from moving elementary sources. 
This is because a moving pulsating body, producing a mass flux, necessarily has 
associated with it a momentum flux. Hence the sound field produced is that of a 
moving monopole and a coupled dipole. Moreover, the strength of the dipole is 
smaller by only a factor of the order of the Mach number than the monopole and 
so affects the Doppler amplification factor. 

Investigation here of the far-field form of the acoustic field produced by a 
moving pulsating body of arbitrary shape has determined that it is amplified 
from its value at rest by a factor 
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where air is the virtual mass tensor. When M lies along an eigenvector of the 
symmetric tensor the amplifying factor is (1 - Mr)-(3+a), where a is the corre- 
sponding eigenvalue. However, when M is not in the direction of an eigenvector 
of a, the far field may be amplified even for points which lie in a plane perpendi- 
cular to the direction of motion. 

The distant form of the acoustic field produced by the oscillation of a con- 
vected compact body has also been investigated. We have found that this field 
is not that of a moving dipole as is usually supposed. The effect of motion is com- 
plicated and quite unpredictable from any previous studies. It is not completely 
described in terms of Doppler factors, and contains an additional omnidirectional 
term of strength -MiaijMiT$. 

When the motion is parallel to an eigenvalue of the symmetric tensor aij, the 
non-convected field is amplified by a factor ( 1  - Mr)-4, and there is an additiona 
omnidirectional field. 

The author wishes to thank Professor J. E. Pfowcs Williams for all his guidance 
and advice. She also acknowledges the support of an S.R.C. studentship. 

Appendix 
Prom (1)  we have 

throughout the fluid, where P = (p/po- l )c t+iu2 .  We introduce a bounded 
closed surface S which encloses the body and possibly some fluid too. Then we 
define a function f (x, t) by 

i f(x, t) > 0 for points (x, t) outside S, 
f (x,t) < 0 for points (x,t) within S, 
f (x,t) = 0 for points (x,t) on S. 

The velocity v of the surface is such that 

aj/at + vi atlax, = 0.  (A 3) 

By multiplying (A 1) by H ( f ) ,  where H i s  the Heaviside function, we obtain the 
global equation 
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or alternatively 

( i g - V 2 ) H P =  - - (H(UAW) , )+HV~ a p-ldp-c,2(p/p0-1) 
axi 

Since ap/at + V . (pu) = 0, we can simplify the last term to obtain 

As in the work by Ffowcs Williams & Hawkings (1969) we can write this as an 

x ni d,'3(q), 

where q are moving co-ordinates such that S is a constant function of q, 
&. = v.x/(co /XI), J is the volume Jaeobian of the transformation, A is the 
surface Jacobian of the transformation and square brackets mean 'evaluated a t  
at  retarded time'. 

For our purposes here it is most convenient to take 8 to be a surface of fixed 
geometry which moves downstream with velocity U .  Then a suitable set of moving 
co-ordinates is q = y - Ut, giving J = A = I. 
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